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Conclusions and future works

Conclusion

* We provided an overview on some key results on control of distributed port
Hamiltonian systems in the 1D case.

¢ We detailed a constructive control design technique : energy shaping for
boundary/in domain controlled DPS.

* We proposed first ideas on observer design.
* We presented some possibles extensions to irreversible thermodynamic systems.

¢ Study of the impact of the distribution of the patches on the achievable
performances.

¢ Control design for a class of non linear PDE systems.
¢ Extension to 2D DPS.
¢ Control design for irreversible PHS.
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1. Context and motivation

2. Infinite dimensional Port Hamiltonian systems (PHS)

3. Control by interconnection and energy shaping

4. Irreversible boundary controlled port Hamiltonian Systems

5. Conclusions and future works
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Control design

¢ Use the Thermodynamic availability function as closed loop Lyapunov function.

A= /0 ) &

i ae) 2(,)
u(s*) - va(& s*)
B il s(¢, 1)
. s*()

¢ Use Entropy Assignment to guarantee the convergence of trajectories.

It has been successfully applied to the control of the heat equation. More complex
systems (reaction-convection-diffusion systems) are under investigation.

&
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The non-isentropic fluid : the irreversible case

The system of balance equations may be written as the quasi-Hamiltonian system

o4 0 50) 0 i
=1%o &G®O)|| |2
5‘_§ 0 %(82)63(2) 0 35

From this new formulation (skew symmetry of the differential operator) one can define
the energy/entropy boundary port variables (and input/output) such that :

and
ﬁ— badz—{— v
dt . A yS &
R g—
>0
femto-st
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The non-isentropic fluid : the irreversible case

We can account for the thermal domain by considering Gibbs’ equation
du = —pd¢+Tds

where s denotes the entropy density and T the temperature. The total energy of the
system is still the sum of the kinetic and the internal energy but now depends on s

H(v, ¢, 8) = /: (%02 i u(.;ﬁ,s)) az

From the conservation of the total energy and Gibbs’ equation % = T we get

s AN
Cen-L(5) ¢

femto-st
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Irreversible systems
We consider a 1-D isentropic fluid in Lagrangian coordinates, also known as p-system,
with [a,0] > z, a, b e R, a < b. We choose as state variables
¢ the specific volume ¢(¢, Z),
¢ the velocity v (¢, z) of the fluid.
System of two conservation laws :

O v
E(tz) = o7 (f,Z)

v _op or
g(f, Z) - 82 (t7 Z) 8Z(t> Z)

where p(¢) is the pressure of the fluid, 7 = — ,&% with & the viscous damping
coefficient. The total energy of the system is given by the sum of the kinetic energy and

internal energy :

H(v, ¢) = /ab (%fu? - u(¢>)) diz

216 Lo (1)) o o000l (12])
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Control by interconnection (Achievable performances) £
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FIGURE — Control by interconnection. Full actuation (left), partial actuation (right).
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Application case (2) (energy shaping +damping injection)
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Application case (2) (damping injection)
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Energy shaping : application (1)

We consider the control of a weakly damped Timoshenko beau using 50
homogeneously distributed patches.

/]
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@
Stability analysis
The controller is now connected to the infinite dimensional system leading to :
s ((T—-R—-BDB*) —-BBIN(H O
%= ( B,B* 0 0 Q) &4
Agy

where X = (x7  x]) T e X, where Xs = L, ([0, L], R%’) x R™.

Existence of solution, stability analysis

¢ The operator .4 defined in (44) generates a contraction semigroup on
Xs = Ly ([0, L],RQP) x R™.

* The operator .4 has a compact resolvent.

* Asymptotic stability : For any X(0) € L, ([0, L],]R?”) x R™, the unigue solution of
(44) tends to zero asymptotically, and the closed loop system (44) is globally
asymptotically stable.
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Energy shaping

Approximate energy shaping [Liu et al., 2021]

Choosing J; = 0, and A, = 0, the closed loop system (38) admits :

C(Xi 4, Xc) = BoM" Bl X4 — Xo (41)

as structural invariant along the closed loop trajectories. The control law (37) is a Pl
action equivalent to the state feedback :

Uy = —BLQ:BM" Bl I X4 — DM Bl Quxay. (42)

Therefore, the closed loop system yields :
(J:'ﬁd) _ ( 0 Jj ) (éﬂﬂo’) (43)
Xoq —JI — (Ry+BygMDMTBl ) ) \QoXou ) °
where : @ = Q + J T ByyMBI Q.B-MT Bl J .

Bl Q.B. can be designed to minimise H Q — QmHF (Convex optimization problem)

.@{"tOfSt 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 33749



@
Control by interconnection
The closed loop system is given by
Xey = (Jor — Roy) QorXor, (38)
where X = (x{,, xJ;, xJ) ' Q, = diag (Qi, @, Q),
O J; 0 0 0 0
Jo= | =Jf 0 —BogMB: |, Ry= |0 Ry+ BuyMD-M'Bl, 0 |.
0 B:MTBI, Je 0 0 A
The Hamiltonian of the controller (36) is :
1
He(x) = Exg QoXo. (39)
Therefore, the closed loop Hamiltonian function reads :
Hoig (X1, Xog> Xe) = Ha (X145 Xoa) + Ho(Xe). (40)
érntofSt 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 32/49



Control by interconnection

Uc=Yd

Controller

The controller is designed as finite dimensional PHS of the form :

Xe = (Jo — Ac) Qoxe + Bot,
Yo = BGTOCXG + Dete,

interconnected in a power preserving way through the relation

Uy 0 —-M Yo . nX m
(Uo) — (MT 0 ) (}’c) , where M =Tm @1,y € R77T,

(37)

femto-st 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022).
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Early lumping approach
The system is first discretized using a structure presewiﬁg method (mixed finite
element method [Golo et al., 2004]) such that the approximation of (1) is again a PHS

with n elements :

AT Qi Xy 0
() = n = A (G10) + Bo + (g, ) s (342)
Qi x
¥ = B] ( Q;_X;j ) + Dy, (34b)

vo=(0 &) (Goic). (4

where x;; = (x! ... )(;”)TER”PX‘ fori e {1,---,2p},

0 Jj 0 O
JIn = ¢ ) and A, = ( ) )
" (—JIFr 0 " 0 ARy
The discretized energy reads :
1 4. T
Hy(X1a, Xoq) = 5 (X1dO1X1d 4 X2d02x2d) : (33)
femto-st 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 30/49
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Control by interconnection

¢ Non ideal case : the distributed parameter system is actuated through piecewise
constant elements.

Controller

'.éfnto'St 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022). 26 /49



Energy shaping : ideal case

Energy shaping [Trenchant et al., 2017]

Choosing B; = G and J. = 0 the closed loop system (25) admits as structural
invariants the function C(x.) defined by (26) and

V= (¢1>0>¢1)

In this case the hyperbolic system (1) connected to the dynamic controller (36) of the

form o
O —
{W(C’ )= 9uo(é. -
Ye(€,t) = G*Qexp(C, B) + Scuc((, f)

is equivalent to the system
9 [X1 (<, f)] _ [ g ] [(%1 (O)+2:(9) xi (€, f)]
at | X(¢, 1) —G*  —(R+380) Ho(C)x2(¢, 1)

L [HAO+2e(O)) X (€, B) _ - |[(H1(©)+2c(0) X (€, 8)
“5‘3[ Ol B ]’yf"c[ N Ole, B ] (33)

(32)
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Control by interconnection : ideal case

The closed loop system reads :

9% % 0 G 0 HiX
—=| & |=| -¢¢ -(S+A -B: HoXo (29)
at % 0 By Te QeXe

Structural invariants

The closed loop system (25) admits structural invariants of the form

b
Ko = C(Xs) = / U x.0¢ (26)
a
with ¥ = (101,42, 03) if and only if
— Gr(¢) = 0= =By () + TS pa(() (27)
(Sc + R)3pe(() =0 (28)
Gp1(¢) + Bspa(¢) = 0 (29)

0 G 0 P1(¢)
—Gl 0 & P2(¢) =0 (30)
0 Bl YPa(()

@{“to_'b't 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 27749
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@
Control by interconnection : ideal case
¢ |deal case : the control acts at each point ¢ of the spatial domain.
The controller is of the form
3)(0
==, = X, f) + Beu )
{ 8t (Ca ) jOQC O(Ca ) + C O(Ca ) (23)
YO(C: t) = BO* QGXO(C7 t) + SCUO(Q: t)
where Qc(§) = QL(¢) and Qc(¢) > ne with e > 0 for all ¢ € [a, b], S¢ and
Sc(€) = S2 (€) and S¢(¢) = ns with s > 0 for all { € [a, 6] and :
Be=Byg+ B 3andJ—J + J 2 (24)
¢ = Ll C18§> ¢ = vl c18€
with B, Ber € R Jog = —J1, ot = J], € Rl
@“to_'s‘: 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 26 /49



Energy shaping

¢ In domain control case : we consider how in domain control

System

Controller

and the system is connected to the controller in a power preserving way :

(eed) = (0 ) (Ceed) - (“67). 2

'.éfnto'St 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 25749



Implementation on the elastic string example

We consider here that
* The position of the end point i.e. w(b, f), is measured .

¢ The state is reconstructed using a Luenberger PH finite dimensional observer (the
controller uses the observer state)=- the closed loop stability is guaranteed
[Toledo et al., 2020].

'.éfntofSt 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 24749



Energy shaping

Under the hypothesis that the Casimir functions exist, the closed-loop dynamics (when
u=yc+ t)is given by :

X (6,0 = PR (1)) (0) + (P — Go) 22 (x()(0)
5Hyy (20)
S i (M (x)) (®)
(%2(0) (a)

in which & denotes the varlatlonal derivative, while -

) = SO+ 5 (f VT me )
b
xf-1oOF—T/ (O Tx(t, )0z (21)

and W' is a n x 2n full rank, real matrix s.t. WX W'’ > 0.

N &
Lo Y
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Energy shaping

¢ Boundary control case : Asymptotic stabilisation [Macchelli et al., 2017a],
Exponential stabilisation [Macchelli et al., 2020] = Control (through
(Jo — Re, Go + Po, (Ge + Pe)', Mo + S¢)) = integrals of the state over the
spatial domain.

Casimir functions

Consider the closed loop boundary control system with &' = 0 then,

C(x(t), X () = T xc(f) + fa bwr(g)x(t, ¢)oz

is a Casimir function for this system if and only if ¢ € H! (a, b;R"),

PLE2(E) + (Po + Go)(¢) = 0 (17)
(o + Ro + (G + Po) R (8]} = 0 (18)
(Go = Po) T+ [ Wt (Mo — 50) W] A () = 0 (19)
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Energy shaping

¢ Boundary control case : Asymptotic stabilisation [Macchelli et al., 2017a],
Exponential stabilisation [Macchelli et al., 2020] = Control (through
(Jo — Re, Go + Po, (Ge + Pe)', Mo + S¢)) = integrals of the state over the
spatial domain.
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Energy shaping

Objectives

Modification of the closed loop system’s properties (energy shaping) + stabilization
(damping injection).

From the power preserving interconnection
Heor (X, Xc) = H(X) + Ho(xe)
We first look for structural invariants C(x, x.) ie. ¢ = 0
Cx,xc) =X+ F(x) =«
where F is a smooth function. In this case the closed loop energy function reads
He(X, X)) = Ho(x) = H(X) + He(x — F(X))

Asymptotic stability of the closed loop system in x* is achieved using damping injection
such that
dH,

ot

& 0t X~

'.éfnto_'s‘: 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 21749



Energy shaping
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&
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Control by interconnection

The system is interconnected with a dynamic controller in a power preserving way.

U 1A
— System —
Controller
Ud = 'YC -+ UC = Yd
— U. Y‘ - — I_-
System
+ Yy _vivy
T_T T T ...... T Controller
Ud-D

FIGURE — Control by interconnection. Boundary control {left), in domain control (right).

The closed loop energy is equal to the sum of the open loop energy and the controller
energy.

'.éfnto'St 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022). 20 /49
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@
Non linear case
The previous results have been generalized to the non-linear case
[Ramirez et al., 2017] (under some assumptions).
i - - BC-PHS 4 >
Yo s
Non-linear ODE

with

v =Kwv

NL S o =—50(v)T — A(Keve) + Bote (16)
Yo =BlKyvo+ Solo

where v; € R, v, ¢ R, form the components of the state vector, B: € My . (R),
Ko € Mn, (R), Ko = KT, Ko > 0, Sc € M(R) with Sc = SJ and S¢ > 0.

'.é{nto_'s‘: 25th International Symposlum on Mathematical Theory of Networks and Systems (MTNS 2022). 18/49



Dynamic boundary feedback

We consider the controller as linear finite dimensional port Hamiltonian system

V= (J— Re) QuV+ Bolic, Yo=BlQv+Sstle, Jo=—J], Re=R] >0

with storage function E4(f) = S {(v()Qev(f))rm, Qo = QJ > 0 € R™ x R™.

v

BC-PHS

¥e Ue

F 3

Linear ODE (2)

Stability

If the following conditions are satistied
¢ ) + DN = el Hx(2, )%, € > 0
* power preserving interconnection
U= —ye+r, and t = y

* the controller is assumed to be exponentially
stable, ie, A; = (J; — R:)Q; is Hurwitz and
strictly input passive e, S; > 0.

The closed loop system is exponentially stable.

This result has been used for robust tracking control design using internal model principle

[Paunonen et al_, 2021].

&
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Dynamic boundary feedback

We consider the controller as linear finite dimensional port Hamiltonian system

i/ . (Jc - Rc) QCV + BcUc,

Yo=BlQwv, Jb=-J], R.=R] >0

with storage function E.(f) = %(v(t)ocv(t)mm, Q:=Q] >0cR”"x R,

Ye

BC-PHS

Linear ODE (1)

U

4

Stability

It the following conditions are satisfied

* power preserving interconnection
U= —ye+r, and tf; = y

* the controller is assumed to be exponentially
stable, i.e., A; := (Js — Rs)Q: Is Hurwitz

The closed loop system is asymptotically stable.

&
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Static feedback control

Impedance passive case

In the impedance passive case the BCS fulfills

22Xl < 4T (o).

Static controller : o

r U . . _pe .
—(— BC-PHS ¥ . Asymptotic stability :

¥- a > 0+(compactness condition)

¢ Exponential stability
[Villegas et al., 2009] : « st

Yo e
Static Gain

(dE /o) < —K|[(Hx)(t, b)lIf

&

where K > 0.

This result has been used for observer design [Toledo et al_, 2020].
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@
The vibrating string example
The boundary port variables are
v(b) — v(a)
(f@) _ _1__ a(b) — o(a)
es) 2 | o(b)+c(a)
v(b) + v(a)
The boundary input and output are selected as
— V(a) t) o —0'(3, t)
w0 = (5(53) o= (Vi) (19)
which can be derived choosing W and W such that :
T /-1 0 0 {1 ~ 1T /0 1 -1 0
W=7§(0 1 1 0) W=7§(1 0 0 1)

The energy balance is then :
dH
Fral s yH(Hu(®).
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The vibrating string example

The vibrating string equation is given by

32w(§,t) 1 3w(§ f) Aw(¢, t)
o u(©) 5 (10757) 075

and can be recasted in a PHS form choosing £ = 3“’652’ 9 and =k ér’{) as state

variables.
() -2 B)(e 1))
\pP) \ & -D 0 - p

which is on the form

— () = (P1 3%. Py — 5’0) [Hx(, B)]

with

= (8 8)m= (8 B) =0 2 )mtco= (55
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Boundary controlled port Hamiltonian systems

The general formulation (1) allows to model a large class of systems.

For example :
¢ The 1D wave equationwheren=1, N=1,Gg =0,G; = 1.

¢ The Euler Bernouilli beam equation. Inthiscase n =1, N = 2,
Gy =0,Gi=0,Gs= 1.

¢ The Timoshenko beam equation. Inthiscasen=2, N =1, and

0 1 1 0
@=lo o)-a=lo 1

In what follows we focus on first order differential operators
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Boundary controlled port Hamiltonian systems

Existence of solution [Le Gorrec et al., 2005]

The operator

N i
=5 P,-é% (HOX(C, ) — ReH(OX(C. 1)
i=0

with domain
f [ H{b)x(b,1) T i

o,
DJ)= M € H' (a,bR) | Hapx(a, | € eV

bt

Lo a,)|

\ L 5¢N—1

where Wy is defined by (9) and =; and =, satisfy (12), generates a contraction
semigroup on X. Furthermore the system (5-7) with (9-10) and (12) defines a boundary
control system.

4

= &
Lo Y
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Boundary controlled port Hamiltonian systems

where

P, e Al
Fo= f 0
(—1)V="Py O 0
and = and =, in R¥*¥ satisfy
=Tz a=l= -0 and=]=+=]= =1

The energy balance associated to the system reads

aH b b
== [ vudc— [ (¢ 9% QRO ) de+ yFus

b
< / ylugd¢ + ylus
a

(11)

(12)

(13)

(14)
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Boundary controlled port Hamiltonian systems

Mixed in-domain / boundary controlled port Hamiltonian systems (IDBC-PHS)

A mixed in-domain / boundary controlled port Hamiltonian system is an infinite
dimensional system of the form (5-7) where

i ?{(b)x(b, £ 7 - H(B)x(b, ) T

2k Fﬁ)‘) (b.1) &0 (1,
o IE | Mo | =0 | aa i

MN—1 ) N—1
22 (a,8), = (_’“X) (a,)
with

W= B R (9)
W, — [% (Z1 + =oPs) % (1 - Ezpe)] ; (10)
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Infinite dimensional Port Hamiltonian systems (PHS)

For a sake of compactness we shall use the following notation
_ 0 Gj |10 O
ooy §1-%=[2 3
and the formulation of (1)

dx N & 0
30 (6.0 = 22 Prgs (RO 0) — (OG0 + 9] st

Ya(¢, ) = [0 ] H(Ox(S, )
us = B (H()X(C, ), ys = C(H(C)x(C, )

The total energy of the system H(x) is defined by

HO) = 1 [ (X7 0mOx(E. 0) o

(4)
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Infinite dimensional Port Hamiltonian systems (PHS)

Infinite dimensional Port Hamiltonian systems (PHS)

9 [x(.H] _[ O Hy (O)x (€, 1)
i o) = [0 <R [aiated] + [1] w0 (o
paio = [0 1) [ZAtERR] @
M4 (0x1(¢, M (0¥ (6,
=8| Saico) o= Haomic (3)

where x = [x/,x]]7 € X = %([a, b ,R") x L*([a, b] ,R"), H = diag(H1,H) and
H(C) = HT(¢) and H(¢) = npwithn > O0forall ¢ € [a, 4], Re R B=RT >0,

B(:) and C{(.) are some boundary input and boundary output mapping operators.
Furthermore

81‘
G = Z&G;acj,andg* Z( 1)G;Tac

with G; € R
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Outline o

1. Context and motivation

2. Infinite dimensional Port Hamiltonian systems (PHS)

3. Control by interconnection and energy shaping

4. Irreversible boundary controlled port Hamiltonian Systems

5. Conclusions and future works
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Context : port Hamiltonian systems

In the linear 1D case this formalism has been used for

¢ Proving existence of solution using the semi-group theory [Le Gorrec et al., 2005].

¢ Stability analysis (when interconnected with linear or non linear ODEs) :
asymptotic or exponential [Ramirez et al., 2017, Augner, 2016].

¢ Simulation through structure preserving schemes
[Trenchant et al., 2018, Kotyczka et al., 2019].

¢ Control design : control by interconnection, energy shaping, observer design,

backstepping ... [Macchelli et al., 2017b, Toledo et al., 2020, Redaud et al., 2022].

Some extensions have been proposed for
¢ Multidimensional systems [Skrepek, 2021].
¢ |mplicit systems [Heidari and Zwart, 2022].

¢ Non linear PDE systems such as 1D or 2D-3D fluids ([Mora et al., 2021]) using
Irreversible port Hamiltonian Formulations ([Ramirez et al., 2022]).

In this talk we recall some well known results on boundary controlled port Hamiltonian
systems and consider energy shaping using boundary or in domain control. Extension
to IPHS.
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Context : port Hamiltonian systems

Port Hamiltonian systems (PHS)

Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized

(2001) to distributed parameter systems.
x = (J(x) — R(x)) 42 + Bug

x = (JOx) — R(x)) 284 4 By vy = B 210
. _ T 8H(x) : X
X(f) - Y= B(X) EXG X(T, C) : f@ . 6H!X!| 3
G <ylu \ eo =

¢ Port Hamiltonian systems :

* The state variables are chosen as the energy variables.

¢ The links between the energy function and the system dynamics is made
explicit through symmetries.

¢ The boundary port variables are power conjugated.

¢ “Easy" to extend to non linear or systems defined on higher dimensional spaces.
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Context : port Hamiltonian systems

Port Hamiltonian systems (PHS)

Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized
(2001) to distributed parameter systems.

X = (J(x) — R(x)) 24 + Byug

x = (J(x) - R(x)) 285 4 Blx)u Y= pral
x(1) : Jg{H: B();)T%({l x(lC) fa _ Mb ;
G Syu Lo i

—Or S ydud-}— fgea

¢ Port Hamiltonian systems :
* The state variables are chosen as the energy variables.
¢ The links between the energy function and the system dynamics is made

explicit through symmetries.
¢ The boundary port variables are power conjugated.
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Context : port Hamiltonian systems

Port Hamiltonian systems (PHS)

Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized
(2001) to distributed parameter systems.

X = (J(x) — R(x)) 24 + Byug

x = (JOx) — R(x)) 284 4 By bl
x(n):y v =897 x(1,¢) - o\ _ s, ;
% <y ep )= "arlo

%f- S ydud+ fgea
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Context / Motivation : Toward complex systems and structures 7
* Soft robotics (FEMTO-ST France)
¢ Fluid systems
: 2 : * Artificial aorta for blood
* Modeling and cpnlrol of interglotal air pressure control (coll EPFL
flows (coll. USM Chile) A
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Context / Motivation : Toward complex systems and structures

* Soft robotics (FEMTO-ST France)

¢ Fluid systems

* Modeling and control of interglotal air
flows (coll. USM Chile)
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Context / Motivation : Toward complex systems and structures %
* Soft robotics (FEMTO-ST France)
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Context / Motivation : control of flexible structures Y
A Boundary controlled systems {e.g. Control of nanotweezers - Goll. LIMMS, Tokyo)
wiy
I ) ' "zﬁ‘z
¢ |n-domain control of distributed parameter systems (eg. Cortrol of smart endoscopes, FEMTO-5T)
AL cuatan el EAT witistind conaaedihe b ok
I LI — ttklk}'n.;ua
LArdainia
* Exploration, imaging, diagnosis.
* Mini invasive surgery.
* Toward miniaturized and smart endoscopes.
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Context / Motivation : control of flexible structures

A Boundary controlled systems {e.g. Control of nanotweezers - Goll. LIMMS, Tokyo)
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